Bounding the sum of square roots via lattice reduction
نویسندگان
چکیده
منابع مشابه
Bounding the Sum of Square Roots via Lattice Reduction
Let k and n be positive integers. DefineR(n, k) to be the minimum positive value of |ei √ s1 + e2 √ s2 + · · ·+ ek √ sk − t| , where s1, s2, · · · , sk are positive integers no larger than n, t is an integer and ei ∈ {1, 0,−1} for all 1 ≤ i ≤ k. It is important in computational geometry to determine a good lower and upper bound of R(n, k). In this paper we show that this problem is closely rela...
متن کاملthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولVariance Reduction via Lattice
This is a review article on lattice methods for multiple integration over the unit hypercube, with a variance-reduction viewpoint. It also contains some new results and ideas. The aim is to examine the basic principles supporting these methods and how they can be used eeectively for the simulation models that are typically encountered in the area of Management Science. These models can usually ...
متن کاملTensor principal component analysis via sum-of-square proofs
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-3 tensor T of the form T = τ · v⊗3 0 + A, where τ > 0 is a signal-to-noise ratio, v0 is a unit vector, and A is a random noise tensor, the goal is to recover the planted vector v0. For the case that A has iid standard Gaussian entries, we give an efficient algorith...
متن کاملComplex roots via real roots and square roots using Routh’s stability criterion
We present a method, based on the Routh stability criterion, for finding the complex roots of polynomials with real coefficients. As in Gauss’s 1815 proof of the Fundamental Theorem of Algebra, we reduce the problem to that of finding real roots and square roots of certain associated polynomials. Unlike Gauss’s proof, our method generates these associated polynomials in an algorithmic way.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2009
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-09-02304-7